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In lifetime bioassays, trichloroethylene (TCE, CAS No. 79-01-6) causes liver tumors in mice following
gavage, liver and lung tumors in mice following inhalation, and kidney tumors in rats following
gavage or inhalation. Recently developed pharmacokinetic models provide estimates of internal,
target-organ doses of the TCE metabolites thought responsible for these tumor responses.
Dose-response analyses following recently proposed methods for carcinogen risk assessment
from the U.S. Environmental Protection Agency (U.S. EPA) are conducted on the animal tumor data
using the pharmacokinetic dosimeters to derive a series of alternative projections of the potential
carcinogenic potency of TCE in humans exposed to low environmental concentrations. Although
mechanistic considerations suggest action of possibly nonlinear processes, dose-response shapes
in the observable range of tumor incidence evince little sign of such patterns. Results depend on
which of several alternative pharmacokinetic analyses are used to define target-organ doses.
Human potency projections under the U.S. EPA linear method based on mouse liver tumors and
internal dosimetry equal or somewhat exceed calculations based on administered dose, and
projections based on mouse liver tumors exceed those from mouse lung or rat kidney tumors.
Estimates of the carcinogenic potency of the two primary oxidative metabolites of TCE-
trichloroacetic acid and dichloroacetic acid, which are mouse liver carcinogens in their own right-
are also made, but it is not clear whether the carcinogenic potency of TCE can be quantitatively
ascribed to metabolic generation of these metabolites. Key words: carcinogenic potency, cross-
species extrapolation, dichloroacetic acid, internal dose, low-dose extrapolation, trichloroacetic acid,
trichloroethylene. - Environ Health Perspect 1 08(suppl 2):343-358 (2000).
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The U.S. Environmental Protection Agency
(U.S. EPA) has in recent years produced two
documents presenting its quantitative risk
assessment of the carcinogenic potency of
trichloroethylene (TCE) for human environ-
mental exposures (1,2). Since the completion
of these documents, several developments
make it appropriate to revisit the question of
the carcinogenic potency ofTCE:
* New animal bioassays have been con-

ducted on TCE-in particular, two gavage
studies were conducted by the National
Toxicology Program (NTP) (3,4).

* TCE pharmacokinetics and metabolism
are now much better elucidated, and a
good deal ofwork has been done on phys-
iologically based pharmacokinetic model-
ing of TCE and its major metabolites in
experimental animals and humans (5-9).

* Some of the principal metabolites ofTCE
are carcinogenic in their own right when
directly administered to experimental ani-
mals-in particular, trichloroacetic acid
(TCA) and dichloroacetic acid (DCA)
cause liver tumors in mice when adminis-
tered in drinking water (10-15).

* The understanding of the mechanisms of
carcinogenic action of TCE has
improved.

* The U.S. EPA has issued proposed revi-
sions to its preferred methodology for
conducting carcinogen risk assessment
(10), which include procedures somewhat

different than those used in previous
agency analyses ofTCE.
Many of these developments are discussed

more thoroughly in the accompanying state-
of-the-science articles (6,9,16-20) Together
they raise a number of possibilities for new,
more rigorous, and more biologically insight-
ful analyses of whether and how much TCE
may increase cancer risks in humans exposed
to environmental concentrations.

The present article examines a number of
possible approaches to dose-response analysis
of the observed carcinogenicity of TCE in
experimental animals together with the
implications of these analyses for estimation
of the low-dose potency of TCE in humans.
The collection of alternative methods should
be regarded as an exploration of our basis for
knowing about the potential carcinogenic
potency of TCE, and the credibility of each
result should be influenced by informed sci-
entific judgment, while considering the whole
body of our knowledge (and the remaining
uncertainties) regarding the biology and
toxicology ofTCE.

The end points considered for quanti-
tative analysis are mouse liver tumors, mouse
lung tumors, and rat kidney tumors. Other
tumor end points have been elevated in
occasional studies [e.g., lymphomas in
NMRI mice (21), Leydig cell tumors in
Sprague-Dawley rats (22)], but these other
results have not generally been repeated and

have been discussed in earlier U.S. EPA
reports (1,2).

The proposed revision of the U.S. EPA
guidelines for carcinogen risk assessment (10)
states that biologically based dose-response
models are to be preferred when sufficient
data are available with which to construct
reliable analyses. Although some relevant data
are available, particularly in the case of mouse
liver tumors, at present no such model has
been developed and validated for TCE. This
approach will not be considered here.

In the absence of a biologically based
model, the new guidelines specify an empiri-
cal approach to dose-response analysis con-
sisting of two alternatives designated linear
and nonlinear. A choice is to be made
between these on the grounds of biological
understanding of the mode of action coupled
with observation of the shape of the
dose-response relationship in the observable
region. This choice is potentially a matter of
much consequence; it requires integrative
interpretation of the whole body of available
information and balanced consideration of
the uncertainties regarding the carcinogenic
modes of action of a compound as they are to
be presumed to operate at low exposure lev-
els. Rather than prejudge such decisions,
which are properly considered in the risk
characterization step, I have endeavored to
present the key calculations for both linear
and nonlinear approaches to analysis of
tumor response, while examining the evi-
dence that animal bioassay results provide
regarding the shape of the dose-response
relationship in the observable range.

The carcinogenic responses of test animals
to TCE are believed to be ascribable not to
TCE itself but to various metabolites (16-19).
Pharmacokinetic modeling ofTCE has been
developing, but only recently have physiologi-
cally based models been proposed to describe
the disposition and target-organ-level
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exposures of key metabolites (5,6,8,9). These
models are used herein as a means for conduct-
ing the dose-response analyses (and projection
of potential human risks from environmental
exposures) on the basis of internal dosimetry.
The approach employs modeled estimates of
the exposure of the target organs to the
metabolites that have been proposed to be
responsible for their toxic reactions.

Methods
As described in the proposed revision of
the U.S. EPA guidelines (10), empirical
dose-response analysis has an initial, descrip-
tive phase ("analysis in the range of observa-
tion") conducted by statistically fitting an
appropriate dose-response model to the data
to characterize the shape of the relationship in
the observable region and to identify a point of
departure (PoD) within this region to serve as
the basis for further procedures to extrapolate
to low doses.

When data on times of death of individual
test animals are available, I have characterized
the dose-response relationship in the observ-
able range using the multistage-Weibull
model [MULTI-WEIB (23), assuming inciden-
tally discovered tumors with no time lag].
This model couples a multistage model for
the effects of increasing dose with a descrip-
tion of the increasing incidences over time at
a given dose based on an empirically deter-
mined power of time (24). For studies not
reporting such time-to-tumor information, I
use the multistage model [GLOBAL86 (25)]
fitted to observed lifetime tumor incidence
rates among bioassay animals. One rationale
for the two-phase dose-response analysis in
the new guidelines is that the empirical char-
acterization of the observed dose-response
patterns will not be highly model dependent
within the range of observation. Nonetheless,
exact calculations show minor dependencies
on certain particulars of the implementation.
(Studies subjected to time-to-tumor analysis
were reanalyzed using the multistage model
and lifetime incidences corrected for early
mortality by removing data from all individu-
als who died before the first appearance of a
tumor of interest. This cruder method for
accounting for intercurrent mortality often
leads to slightly higher PoD than time-to-
tumor analysis, but the results do not differ
appreciably.)

Although several alternatives for selecting
the PoD are provided in the new guidelines
proposal, the "standard point of departure,
adopted as a matter of science policy" is the
LEDIO (lower [95%] statistical bound on
effective dose to 10% of the population), the
lower 95% confidence limit on a dose associ-
ated with 10% extra risk (10). Unless other-
wise stated, this method of selecting the PoD is
used herein. These lower limits have been

calculated as provided for in GLOBAL86 (25)
and MULTI-WEIB (23), i.e., they are risk-specific
calculations based on reoptimizing model
parameters at the 10% extra risk level. In addi-
tion, the central estimate of the dose associated
with 10% extra risk, i.e., the ED1o (effective
dose to 10% of the population), calculated
based on the maximum likelihood curve, is
provided. Typically, the EDIo is higher (and
its associated low-dose slope is lower) by about
a factor of2 compared to the LED10.

For the linear method, the second low-
dose extrapolation phase is implemented by
calculating the slope of the line segment
drawn from the PoD and its risk (typically,
10% extra risk) to 0% extra risk at zero dose.
This slope yields a measure of low-dose
potency in terms of incremental risk per unit
of dose. That is, the extrapolation invokes lin-
earity from the PoD downward as a matter of
explicitly stated policy. Since risk is taken to
fall linearly from the 10% level, this low-dose
slope is simply 0.1 divided by the LED1O (or
ED1o). For this slope to be applied to the
evaluation of human exposures, two addi-
tional steps are necessary:
* consideration of the doses (in the prof-

fered units) that are to be presumed of
equal lifetime cancer risk in the experi-
mental animals and humans; and

* reexpression of the slope in terms of units
of human exposure that are convenient
for assessing environmental contamina-
tion, i.e., creating "unit risks" in terms of
incremental risk per unit of continuous
human exposure by ingestion, in inhaled
air or in drinking water.
The first step embodies the key assump-

tions regarding quantitative equivalency of
dose-response relationships in experimental
animals and in humans, a topic that is much
debated, controversial, and yet of major conse-
quence for the estimation of human risk
(26-28). This applies a fortiori when analyses
employ estimates of internal doses provided by
pharmacokinetic modeling; far from obviating
assumptions about toxicological equivalence
across species, the use of pharmacokinetics
moves the issue of toxicological equivalency to
the unfamiliar ground of internal dosimetry.

The second step is partly a matter of
convenience, rendering potencies measured in
unusual or difficult-to-calculate units (such as
those of pharmacokinetically defined target-
organ doses) into units more readily com-
pared with measured human exposures.
Nevertheless, the reexpression of units can
involve key assumptions that should be noted
explicitly. For instance, this step may involve
using human pharmacokinetic models to
"back calculate" from internal doses (on
which the dose-response analysis may have
been based) to the human exposure scenarios
that would lead to them. Such calculations

hinge on uncertainties in the human pharma-
cokinetic model and may involve consequen-
tial assumptions about dose-rate effects and
route-to-route equivalency. Importantly, it is
typically assumed that human pharmaco-
kinetics are essentially linear (i.e., that exter-
nal exposures as measured are proportional to
internal dose) over the range of human expo-
sure levels of interest. This assumption may
fail for certain episodic exposures to high lev-
els or when the internal dose measure refers
to peak concentrations. For low environmen-
tal exposures, however, tissue levels will be far
below those leading to saturation of meta-
bolic processes (6,9), and all model equations
will be essentially linear.

Pharmacokinetic Models
and Internal Doses
Target-organ exposures to specific TCE
metabolites are hypothesized to be appropri-
ate internal dosimeters (16,17,19); therefore,
pharmacokinetic models useful to the risk
assessment process must describe the meta-
bolic generation and disposition of these
moieties in experimental rats and mice and in
humans. At present, two models have such
capability, one formulated by Fisher (9) and
one by Clewell et al. (6). The models are
similar, representing separate elaborations and
extensions of a model published by Allen and
Fisher (5) and Fisher and Allen (8). They
nonetheless predict some different pharmaco-
kinetic behavior, chiefly in the exposure levels
leading to saturation of oxidative metabolism,
in the internal doses achieved by inhalation
versus gavage in mice, and in the levels of key
metabolites to be expected.

Evaluation and comparison of the perfor-
mance of these models are beyond the scope of
the present artide, but it is of interest to exam-
ine their consequences for the quantitative
analysis of the carcinogenicity of TCE.
Accordingly, estimates of internal dosimeters
calculated from these models by their authors
were employed as described below, and refer-
ences herein to Fisher or Clewell doses refer to
these calculations. Development of these mod-
els is an ongoing process, and the estimates
used here should be regarded as provisional.

Bois (29,30) has subjected both the Fisher
and Clewell models to a process of uncertainty
analysis that includes Bayesian updating of
uncertainty distributions of the parameters of
the models in view of the performances of the
models in explaining various pharmacokinetic
data sets. As described in these reports, this
results in output distributions of the modeled
estimates of internal doses resulting from spec-
ified exposure regimes; the distributions repre-
sent uncertainty about the value of the
internal dose estimates that results from
uncertainty about the values of the input
parameters. I have used the medians of these
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output distributions as an alternative source of
central estimates of the internal dosimeters;
these values may be regarded as resulting from
a Bayesian refining of the values of parameters
in the models while retaining the mathemati-
cal model structure. I shall refer to these esti-
mates as the Bois-F and Bois-C estimates to
indicate the calculations of Bois based on the
Fisher and Clewell models, respectively.

Cross-Speces Equivalency ofDoses
As noted, the definition of relative doses in
experimental animals and humans that are
expected to yield equal lifetime cancer risks is
a matter of ongoing discussion and debate. In
this document, I investigate some alternative
approaches, but the "base case" is founded on
default assumptions mentioned in the new
guidelines proposal:
* For oral exposures, the default is to

presume that equal toxicity is achieved
when daily administered amounts (in mil-
ligrams ) are equal per unit of body mass
to the 3/4 power (10,26).

* For inhalation exposures, the default is to
follow the dosimetry methodology devel-
oped for reference concentrations
(10,31), which varies with the nature of
the compound.
For TCE, the inhalation method used is

that for a partly water-soluble gas limited in
uptake by lung perfusion (i.e., a category 3
gas) that has chronic systemic toxic effects
(31). Because the animal:human ratio of
blood:air partition coefficients exceeds unity
(6), the daily concentration x time product,
when suffered for a full lifetime, is presumed
to yield equal carcinogenic effects in experi-
mental animals and humans.

The scaling of administered doses
discussed above is intended to define expo-
sures that are toxicologically equivalent (i.e.,
producing equal lifetime cancer risks) in
experimental rodents and in humans. As
such, the scaling method must presume to
address systematic species differences in
pharmacokinetics (affecting the relative levels
of target-organ exposure that result from each
daily dose) as well as species differences in
pharmacodynamics (affecting the degree of
lifetime cancer risk engendered by ongoing
daily exposure of the target organ).

Compound-specific pharmacokinetic
models address the first of these components,
replacing general default principles with
compound- and species-specific analysis, but
they do not address the second pharmacody-
namic aspect. How to express target-organ
exposures that emerge from pharmacokinetic
analysis so as to be presumed of equivalent
lifetime cancer risk in experimental rodents
and humans has proved to be a complex and
controversial question (26-28,32-34). The
approach taken herein is to presume that

exposures leading to equal daily increments
of the area under the concentration-time
curve (AUC) of the relevant toxic metabolite
in its target organ, when experienced for a
full lifetime, will lead to equal elevation of
lifetime cancer risk. This is a common
assumption for assessment of chronic toxicity
corresponding to the notion that equal long-
term average tissue concentrations are toxico-
logically equivalent when experienced for
equal fractions of a lifetime. It should be rec-
ognized, however, that other reasonable
assumptions, with notably different conse-
quences, are possible.

Reactive intermediates in the pathways of
biological transformation are formed and lost
quickly, and such ephemeral metabolic prod-
ucts do not have well-defined areas-under-
the-curve. In the present case, a reactive thiol
formed during glutathione-dependent metab-
olism ofTCE is thought to be involved in the
genesis of rat kidney tumors (19), and kidney
exposures to this compound are reported by
Clewell et al. (6) and Bois (30) as daily
amounts formed per liter of kidney volume.
(The Fisher model does not describe conjuga-
tive metabolism of TCE.) Two alternatives
for toxic equivalency of this dose measure are
entertained: to assume equal carcinogenic
effect from equal lifetime average daily pro-
duction, and to assume equal effect when
daily production is proportional to the 3/4-
power of body mass. The latter approach is
based on the idea that the relatively slower
pace of physiological processes in larger
species [which tend to maintain proportional-
ity to the 3/4-power of body mass (35,36)] is
key to scaling the pharmacodynamic
processes as well as the pharmacokinetic
processes across species. This approach assigns
equal chronic toxicity not to the amount of
reactive compound produced per unit of tis-
sue over the span of a day but to the same
production over equal spans of physiological
time. (Since relative areas-under-the-curve
already incorporate the slower physiological
pace of humans vis-a-vis rodents, a similar
allowance for physiological time is not needed
when AUCs are the internal dose measure,
under this view.)

Mouse Liver Tumors
The toxicology, tumorigenicity, and potential
mechanisms of carcinogenic action ofTCE in
the liver are reviewed by Bull (16). TCE has
been shown to cause hepatocellular adenomas
and carcinomas in both sexes of B6C3F,
mice when administered by corn oil gavage or
by inhalation. Some bioassays of other strains
of mice have shown liver tumors [e.g., Swiss
mice (22)], whereas others have shown no
such increase [e.g., ICR mice (37)]. Bioassays
of hamsters (21) and several strains of rats
(3,4) have not shown evidence of liver

tumorigenicity by TCE. Epidemiologic
studies have produced what the International
Agency for Research on Cancer characterizes
as "limited" evidence of liver carcinogenicity
in exposed humans, based on studies of
limited power and consistency (38).

It is noteworthy that three of the principal
metabolites ofTCE-TCA, DCA, and chlo-
ral (CH)-are stable compounds that have
been shown to cause mouse liver tumors in
their own right when administered in drink-
ing water or (in the case of CH) by gastric
intubation (11-15) [reviewed by Bull (16)].
These are three metabolites of the oxidative
pathway of TCE metabolism (as opposed to
the conjugative pathway hypothesized to be
responsible for the rat kidney tumors). The
question is raised whether metabolic genera-
tion of these compounds in animals dosed
with TCE is sufficient to explain the observed
induction of liver tumors in these animals. It
is also of interest to seek evidence regarding
whether the effects of TCE can be ascribed
mainly to one or another metabolite, forming
the basis for internal-dose analyses and
extrapolation to humans. At present, no phar-
macokinetic model allows estimation of inter-
nal doses of metabolically generated chloral.

Neither TCE nor TCA appears to be
genotoxic, and the evidence on CH is debated,
as there is some evidence that it can act as a
clastogen (16,39). In an article in this mono-
graph, DCA is characterized as genotoxic only
at high dose levels well above those expected at
environmental exposure levels (39). Several
hypotheses regarding the mechanism of car-
cinogenic action ofTCE suggest underlying
processes that might be markedly nonlinear. It
is therefore of particular interest to examine
the shapes of observed dose-response re-
lationships, seeking evidence of such nonlinear
behavior and information regarding the dose
ranges in which they may appear.

The data for the mouse bioassays showing
liver tumors are presented in Table 1.
Administered doses (lifetime average daily
doses in mg/kg/day intake) and internal doses
based on the pharmacokinetic modeling of
Fisher (9), Clewell et al. (6), and Bois
(29,30) are also shown. These bioassays have
been reviewed and their suitability for risk
assessment commented on in more detail by
Bull (16) and the U.S. EPA (1,2). It should
be noted that the National Cancer Institute
(NCI) (40) experiment employed industrial-
grade TCE that was contaminated with a sta-
bilizer, epichlorohydrin, that is a cause of
site-of-contact tumors. All bioassays used
B6C3F1 mice, except for two Maltoni et al.
(22) experiments on Swiss mice. Maltoni et
al. followed their mice until death, so a life-
time of 104 weeks has been assumed. Of the
pharmacokinetic doses, only those of Fisher
are based on distinct model parameterizations
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for males and females, and it should be * whether these various data sets on mouse * how different hypothesized dose measures
realized that the Fisher (and Bois-F) doses liver tumors are in general agreement; change the dose-response shapes and affect
represent integrated liver concentrations, * how the potency of TCE in generating the congruity among the different data sets.

whereas the Clewell (and Bois-C) doses repre- mouse liver tumors depends on whether it Such plots can serve as evidence regarding
sent integrated plasma concentrations (which is administered by corn oil gavage or by which internal dosimeter may be appropri-
are presumed proportional to the uncharac- inhalation; ate-presumably, a good target-organ
terized liver concentrations). * the general dose-response shapes shown dosimeter will succeed at reconciling

PlotsofLiver Tumor Response
by the various experiments, especially evi- responses in experiments of different route

Plot of LiverTumor Response isures dence for nonlinearity within the and dose levels, portraying them as manifesta-

Various Hypothesized Dose Measures observed range; tions of a single underlying relationship of

Several interesting questions may be * whether any such nonlinearity is ascrib- target-organ dose to response (41,42).
addressed by plotting liver tumor risk as a able to nonlinear pharmacokinetics or to Plots of the tumor incidence data from
function of the alternative dose measures for nonlinearity of response vis-a-vis target- Table 1 (not shown) are hampered in visual
these data sets: organ dose; and interpretation by the markedly different

Table 1. Mouse liver tumor incidences and doses.a

LADD Benign + TCA-auc doses DCA-auc doses
Bioassay Sex/strain (mg/kg/day) Malignant malignant Fisher Bois-F Clewell Bois-C Fisher Bois-F Clewell Bois-C

NCI (40)
Gavage (mg/kg/day)

0 Males
1,000-1,200
2,000-2,400

0 Females
700-900

1,400-1,800

NTP (4)
Gavage (mg/kg/day)

0

1,000
0

1,000
Bell et al. (43)
Inhalation (ppm)

0

100
300
600

0

100
300
600

Maltoni et al. (22)
Inhalation (ppm)

0

100
300
600

0

100
300
600

0

100
300
600

0

100
300
600

0

100
300
600

Males

Females

0

724
1,448

0

538
1,076

0

714
0

714

Males 0
169
508

1,016
Females 0

169
508

1,016

Males 0
(BT306) 148

445
889

Females 0
148
445
889

Males 0
(BT306bis) 148

445
889

Males 0
(Swiss) 148

445
889

Females 0
(Swiss) 148

445
889

1/20
26/50
31/48
0/20
4/50
11/47

8/48
31/50
2/48

13/49

18/99
28/95
31/100
43/97
6/99
4/100
9/94
13/99

14/48
39/50
6/48

22/49

20/99
35/95
38/100
53/97
8/99
9/100

10/94
17/99

1/85
1/86
3/88
6/88
3/90
4/90
4/89
9/87
17/90
19/89
27/90
21/90
4/88
2/89
8/89

13/90
0/90
0/89
0/89
1/89

1,339 5,715 1,069 1,115
2,394 6,032 1,270 1,400

924 5,555 986 990
1,603 5,896 1,184 1,300

1,354 6,504 1,184 1,100

1,196 6,504 1,184 1,100

257 214 798
755 608 1,322

1,349 1,059 1,748

251 214 798
708 608 1,322

1,093 1,059 1,748

225 186 687 500
661 530 1,135 970

1,174 918 1,488 1,300

220 186 687 500
618 530 1,135 970
943 918 1,488 1,300

225 186 687 500
661 530 1,135 970

1,174 918 1,488 1,300

225 186 687 500
661 530 1,135 970

1,174 918 1,488 1,300

220 186 687 500
618 530 1,135 970
943 918 1,488 1,300

16.5 58.4 14.0 36.5
29.5 61.6 17.0 44.0

11.4 56.9 12.6 33.0
19.7 60.3 15.6 41.0

16.7 66.5 15.3 36.0

14.7 66.5 15.3 36.0

0.9 2.2 6.7
2.7 6.2 17.3
4.7 10.8 24.0

0.9 0.9 6.7
2.5 2.5 17.3
3.8 3.8 24.0

0.8 1.9 5.8 19.0
2.3 5.4 15.1 32.0
4.1 9.4 20.8 40.0

0.8 1.9 5.8 19.0
2.2 5.4 15.1 32.0
3.3 9.4 20.8 40.0

0.8 1.9 5.8 19.0
2.3 5.4 15.1 32.0
4.1 9.4 20.8 40.0

0.8 1.9 5.8 19.0
2.3 5.4 15.1 32.0
4.1 9.4 20.8 40.0

0.8 1.9 5.8 19.0
2.2 5.4 15.1 32.0
3.3 9.4 20.8 40.0
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LADD, lifetime average daily dose (intake), allowing for dose-rate changes in NCI (40) and nondosed days during and at end of experiment. 'Tumor incidences corrected for early mortality by remov-
ing from consideration animals that died before first appearance of tumor of interest. For Maltoni et al. 122) malignant tumors are hepatomas; for all others, benign and malignant tumors are hepato-
cellular adenomas and carcinomas, respectively. Fisher (91 and Bois-F (30) doses are daily integrated liver concentrations. Clewell et al. (6) and Bois-C (29) doses are daily integrated plasma
concentrations, all in (mg-hr)/L.
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background rate among data sets. It is not
altogether dear why controls differ so much in
liver tumor incidence among studies. More
informative plots (Figure 1) are obtained if the
incidence rate in controls is subtracted from
that of each dosed group in an experiment.

When plotted against administered dose
(or, for inhalation, daily intake) in mglkg!
day, the male mice show general agreement
among the gavage studies on the one hand
and among the inhalation studies on the
other (Figure la). But in these dose units,
TCE from inhalation appears systematically
less potent than from corn oil gavage. Among
inhalation studies, the response appears to
increase gradually with intake, whereas the
gavage doses seem to show a plateau of
response, with no dose point at a dose low
enough to provide evidence for or against
nonlinearity at lower doses. Female mice
(plots not shown) show lower incidences than
males and evince less differentiation between
inhalation and gavage studies.

When responses are plotted against the
Fisher estimates of the area under the concen-
tration-time curve for TCA (TCA-auc)
(Figure lb), the pattern appears very similar, a
consequence of the high degree of proportion-
ality of the Fisher TCA-auc estimates and
intake. On this plot, employing TCA-auc
dosimetry fails to reconcile inhalation and gav-
age experimental outcomes in terms of a single
relationship of internal dose to response.

When responses are plotted against the
TCA-auc emerging from the Bois reanalysis of
the Fisher model (Figure 1c), two major
changes are evident. Inhalation exposures are
modeled as producing much smaller TCA-auc
than gavage doses (due mostly to an increase in
the estimates from gavage doses). This leads to
the possible interpretation that the inhalation
and gavage responses might be drawn from the
lower and higher regions of a single internal
dose versus response relationship. Second, a
high degree of saturation ofTCA production
is evident between the low and high gavage
doses; despite an administered amount that is
twice as great, the high NCI gavage dose has a
modeled TCA-auc that is only slightly above
that of the lower dose. Indeed, the similar
tumor responses at the single NTP bioassay
dose level and at the two dose levels in the
NCI study are explicable in terms of their
similar TCA-auc (Table 1).

TCA-auc estimates from the Clewell
model (Figure ld) preserve the saturation of
TCA production from low to high gavage dose,
but inhalation exposures are modeled as pro-
ducing as high or higher TCA-auc than the
gavage dosing. This leads to dear incompatibil-
ity of the inhalation and gavage curves based on
this dosimeter. The Bois reanalysis of the
Clewell model (29) (plots not shown) substan-
tially agrees with the original Clewell results.

The liver tumor bioassay results can also
be evaluated as potential functions of the
other major oxidative metabolite of TCE,
dichloroacetic acid. The absolute amounts of
DCA, and the areas-under-the-curve they pro-
duce, are much smaller than for TCA, but
reasons to consider DCA as the potentially
responsible metabolite exist (16). Using the
Fisher model estimates ofDCA area under the
concentration-time curve (DCA-auc, Figure
le) shows the same lack of saturation ofDCA
production between the low and high gavage
doses that is seen with TCA. Inhalation expo-
sures are estimated to generate much less
DCA than gavage doses, leading to potential
interpretation of responses across routes of
administration as common reflections of a sin-
gle underlying relationship with DCA-auc.
Doses from the Bois reanalysis of the Fisher
model (Figure lf) lead chiefly to a difference
in the high-dose behavior, which (as with his
analysis of TCA) shows substantial saturation
ofDCA production.

The Clewell model estimates of DCA-auc
(Figure Ig) are absolutely lower for gavage (but
nonetheless showing pronounced saturation)
and higher for inhalation exposures. As a result,
using this analysis, DCA production fails to
reconcile inhalation and gavage responses.

For the Clewell model (and for the Bois
reanalysis), calculations were also made of
peak concentrations of TCA and DCA, with
the aim of assessing whether the higher con-
centrations achieved by bolus dosing might
have demonstrable toxicological significance.
In practice, however, for the exposure regimes
of interest, peak concentrations are very highly
correlated with areas under the curve, and the
plots of response as a function of peak concen-
tration (not shown) hardly differ from those
against TCA-auc and DCA-auc. Plots of
responses in female mice are not shown, but
they give results generally similar to those for
males, although the incompatibility of gavage
and inhalation responses is not as marked.

In sum, the most notable feature of the
plotting exercise is the high degree of depen-
dence on which pharmacokinetic model is
employed to generate estimates of internal
doses. The computed estimates are not only
numerically different, they also show different
patterns of dose dependence of metabolic
generation of TCA and DCA and different
degrees of difference between gavage and
inhalation exposures.

The two gavage experiments produced
outcomes that are mutually compatible, and
the suite of inhalation bioassays are also largely
mutually consistent in outcome, but the abil-
ity to explain the gavage and inhalation results
simultaneously as common reflections of a
single underlying dose-response relationship
with a measure of target-organ dose is not
clear-some dose measures show clear failure

of reconciliation, and others are at best
ambiguous. Unfortunately, the plots appear to
provide little evidence regarding whether TCA
or DCA (expressed either as AUCs or as peak
concentrations) are primarily responsible for
the mouse liver tumors.

The pharmacokinetic dose measures
(except those from the Fisher model) show
similar internal doses at the low and high gav-
age levels, explaining the similarity in tumor
response. In essence, there is a single high
internal dose that has been tested 3 times
with similar outcome, but these data give lit-
tle information about the shape of the
dose-response relationship. In contrast, the
inhalation studies have a series of lower doses
of increasing magnitude, and these studies
evince a more-or-less gradually increasing
response with internal dose that shows no
signs of pronounced nonlinearity in the
observable range.

Dose-Response Analysis
Dose-response curves were fitted to the data
sets in Table 1 using administered dose
(mg/kg/day intake), ppm-hours of exposure
(for the inhalation studies), and the various
proposed internal dose metrics based on the
pharmacokinetic modeling of Fisher (9),
Clewell et al. (6), and Bois (29,30). In
essence, basing an analysis on estimates of
TCA-auc or DCA-auc represents an examina-
tion of the consequences of ascribing the
observed tumorigenicity ofTCE entirely to the
actions of the one or of the other metabolite.

For nearly all the inhalation studies using
any dose metric, the maximum likelihood
curve is linear [the exceptions being the Bell et
al. females (43) and the Maltoni et al. Swiss
males (22)]. Moreover, the EDIo values
obtained are generally larger (i.e., the potencies
are lower) than those seen for the corn oil gav-
age data sets, to a degree that varies with the
dose metric used. For this reason, the inhala-
tion analyses are not shown, and the following
focuses on the results from the gavage studies.

The estimated EDIo and LED1O values
obtained for the gavage studies are shown in
Table 2. Since,the NTP study (4) had but one
positive dose level, the estimated curves are, of
mathematical necessity, linear in dose,
although a substantial power of time is esti-
mated in the time-to-tumor analyses. For the
NCI data (40), owing to the points being
nearly superimposed (Figure 1), there is little
opportunity to illuminate the dose-response
pattern. In an attempt to gain perspective on
the curve shape in the observable range, analy-
ses were conducted on the pooled data of the
NCI and NTP studies (results not shown), but
the similarity in response and (for most dose
measures) internal dose for all three dosed
groups prevents results from differing substan-
tially from the analyses of single studies.
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Figure 1. Male mouse liver tumor responses minus control values for gavage and
inhalation studies (Table 1) plotted against various dose measures: (a) mg/kg/day
lifetime average daily intake; (b) Fisher (9) estimates of daily area under the
TCA-auc; (c) Bois (30) estimates of TCA-auc based on the Fisher model; (d) Clewell
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TCE DOSE-RESPONSE ANALYSIS

The EDIo and LEDIO values of Table 2
can be used as Points of Departure. In the case
ofTCA-auc and DCA-auc, it is assumed that
humans will have the same lifetime cancer risk
when exposed to similar daily increments of
area under the concentration curve of these
metabolites (that is, they apply as is without
further adjustment), whereas the projection of
the administered dose values to humans
assumes equal risk for mg/kg314/day exposure. -
Low-dose slopes for the U.S. EPA proposed
linear method can be obtained by dividing 0.1
by the appropriate EDIo or LED1O (10).

For each source of internal dosimetry
estimates, Table 3 shows the internal dose in
humans that would result from ongoing expo-
sure to one conventional unit of external envi-
ronmental concentration. These human
internal doses can then be multiplied by the
corresponding linear-method slope (which is
in terms of risk per unit of internal exposure),
to generate the incremental human risk per
unit of conventional exposure, that is, a unit
risk of the conventional sort except that it is
derived based on dose-response analysis and
cross-species extrapolation using the internal
dosimetry, as described by the relevant phar-
macokinetic model. (This method assumes

that, at relevant human exposure levels, human
internal doses are proportional to external
exposures, which is true in the present case.)

Table 4 presents human incremental risks
per unit of mg/kg/day intake calculated in
this way. Each tabulated value is an alterna-
tive estimate based on the data set of the row
and using the dose metric of the column for
dose-response analysis and animal-to-human
extrapolation. Table 5 gives incremental risk
per jig/L of drinking water contamination, on
the assumption of lifetime consumption of 2
L/day. Table 6 shows incremental risk per
pg/m3 of ambient air concentration on the
assumption of continuous lifetime exposure.
It should be dear that the last table represents
a route extrapolation of the gavage study in
mice to human inhalation, using a human
inhalation pharmacokinetic model (induding
its breathing rate) to estimate the human liver
dose of TCA or DCA, on the assumption
that a given area under the curve in human
liver will have the same risk whether it derives
from an original oral or inhalation exposure.

Points of Departure, expressed as the
human externally measured exposures
necessary to engender a 10% extra risk level
[which are used in defining the Margin of

Exposure of the U.S. EPA nonlinear method
(10)] can be obtained by multiplying the rec-
iprocals of the entries of Tables 4-6 by 0.1.

Analysis ofTCA and DCA Bioassays
Both TCA and DCA, the principal stable
metabolites of oxidative metabolism of TCE,
have been shown to be carcinogenic in their
own right when administered in drinking
water (11-16). For neither compound has a
full lifetime bioassay of the usual design been
conducted, but a number of studies have
examined mice for various durations of
exposure to a variety of drinking water
concentrations (Table 7). It is largely due to
these observations that DCA and TCA are
candidates for the ultimate cause of the liver
carcinogenicity of TCE. It is therefore of
interest to examine the carcinogenic potency
of DCA and TCA as a means of asking
whether the tumors engendered by TCE can
be quantitatively explained on the basis of the
DCA and TCA (measured as their areas under
the curve metabolically generated as a conse-
quence ofTCE dosing. In addition, evidence
of nonlinear tumor response curves as a func-
tion of either DCA or TCA exposure could
provide insight into the low-dose shape

Table 2. LED10 and ED10 values based on mouse liver tumors.

Administered, TCA-auc, (mg-hr)/L DCA-auc, (mg-hr)/L
Data set mg/kg/day Fisher Bois-F Clewell Bois-C Fisher Clewell Bois-C

ED10
NTP (4)

Males, carcinomas 60.4 114.6 550.6 100.2 93.1 1.41 1.3 3.05
Males, adenomas + carcinomas 35.2 66.8 320.9 58.4 54.3 0.82 0.75 1.78
Females, carcinomas 167.9 281.2 1,529.5 278.4 258.7 3.46 3.6 8.47
Females, adenomas + carcinomas 73.5 123.1 669.5 121.9 113.2 1.51 1.57 3.71

NCI (40)
Males, carcinomas 136.8 234.8 4,168.5 417.2 302.4 2.89 5.02 13.99
Females, carcinomas 621.8 1,039.9 5,297.0 856.9 905.8 12.82 11.14 29.23

LED10
NTP (4)

Males, carcinomas 37.8 71.7 344.2 62.7 58.2 0.88 0.81 1.91
Males, adenomas + carcinomas 21.6 40.9 196.5 35.8 33.2 0.5 0.46 1.09
Females, carcinomas 90.7 151.9 825.9 150.4 139.7 1.87 1.94 4.57
Females, adenomas + carcinomas 43.9 73.5 399.8 72.8 67.6 0.9 0.94 2.21

NCI (40)
Males, carcinomas 106.5 183.5 624.8 119.4 126.7 2.26 1.57 4.09
Females, carcinomas 348.9 573.6 2,885.6 495.7 535.2 7.07 6.5 17.08

NTP analyses are based on Multistage-Weibull time-to-tumor analysis; NCI analyses are based on multistage model of degree 2. Fisher 19) and Bois-F (30) doses are AUC in liver; Clewell (6) and Bois-C
(29) doses are AUC in plasma. Bois did not analyze DCA-auc for the Fisher model.

Table 3. Modeled human internal doses from unit environmental exposures.

TCA-auc DCA-auc
daily, (mg-hr)/L daily, (mg-hr)/L Thiol production Chloral-auc

Model Human exposure In liver In plasma In liver In plasma daily, mg/g-kidney daily, (mg-hr)/L
Fisher (9) 1 ppb inhalation 0.1253 3.77 x 104

1 pg/L in drinking water 0.0062 1.87 x 10-5
( = 2.86 x 10-5 mg/kg/day)

Bois (30) (Bois-F) 1 pg/L in drinking water 0.0038
Clewell et al. (6) 1 ppm inhalation 303 0.025 0.008 0.002

1 mg/L in drinking water 14 0.0011 0.0004 2 x 10-5
Bois (29) (Bois-C) 1 ppm inhalation 88 0.45 0.11 0.0013

1 mg/L in drinking water 4.2 0.027 0.0060 2.3 x 104
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Table 4. Linear method estimates of incremental risk per mg/kg/day of TCE intake based on mouse liver tumors.

Dose metric
mg/kg314/day TCA-auc, (mg-hr)/L DCA-auc, (mg-hr)/L

Data set intake Fisher Bois-F Clewell Bois-C Fisher Clewell Bois-C

Based on ED10 values
NTP (4)

Males, carcinomas 1.1 x 10-2 1.9 x1O-1 2.4 x 10-2 4.9 x 10-1 1.6 x 10-1 4.6 x 10-2 3.0 x 10-3 3.1 x 10-2
Males, adenomas+carcinomas 1.9x 10-2 3.3x 10-1 4.1 x10-2 8.4x 10-1 2.7x10-1 7.9x 10-2 5.1 xlO3 5.3x 10-2
Females carcinomas 4. x10-3 7.7x10-2 8.7x10-3 1.8xl0-1 1.2x10-1 1.9x10-2 1.1 Xl 10-3 1.1 xlO2
Females, adenomas + carcinomas 9.1 X 10-3 1.8 X 10-1 2.0 x 10-2 4.0 x 10-' 1.3 x. 10-1 4.3 x 10-2 2.4 x 10-3 2.6 x 10-2

NCI (40)
Males, carcinomas 4.9 x 10-3 9.2 x 10-2 6.3 x 10-3 1.2 x 10-1 4.9 x 10-2 2.3 x 10-2 7.7 x 104 6.8 x 10-3
Females,carcinomas 1.1 Xl1O-3 2.1 xl102 2.9x10-3 5.7x10-2 1.6x10-2 5.2x10-3 3.5x10-4 3.2x10-3

Based on LED10 values
NTP (4)

Males, carcinomas 1.8 x 10-2 3.3 x 10-1 3.9 x 10-2 7.8 x 10-1 2.5 x 10-1 7.4 x 10-2 4.8 x 10-3 5.0 x 10-2
Males,adenomas+carcinomas 3.1 x 10-2 5.3x 10-1 6.8x10-2 1.3x100 4.4x 10- 1.3x 10-1 8.3x10-3 8.7x10-2
Females,carcinomas 7.4x10-3 1.4x 10-1 1.6x10-2 3.3x 10-1 1.1 X10o1 3.5x102 2.Oxl1O-3 2.1 x 10-2
Females, adenomas + carcinomas 1.5 x 10-2 3.0 x 10-1 3.3 x 102 6.7 x 10-1 2.2 x 10-1 7.2 x 102 4.1 x 10-3 4.3 x 10

NCI (40)
Males,carcinomas 6.3x10-3 1.2 x107- 2.1 X102 4.1 xlO-1 1.2 x10-' 2.9x10-2 2.5 xlO03 2.3x10-2
Females, carcinomas 1.9 x 10-3 3.8 x 10-2 5.4 x 10- 9.9 x 10-2 2.8 x 10-2 9.3 x 10-3 5.9 x 10 4 5.5 x 10-3

NTP analyses are based on Multistage-Weibull time-to-tumor analysis; NCI analyses are based on multistage model of degree 2. Fisher 19) and Bois-F (30) doses are AUC in liver; Clewell (6) and Bois-C
(29) doses are AUC in plasma. Bois did not analyze OCA-auc for the Fisher model.

Table 5. Linear method estimates of incremental risk per pg/L of TCE in drinking water based on mouse liver tumors.

Dose metric
mg/kg3/4/day TCA-auc, (mg-hr)/L DCA-auc, (mg-hr)/L

Data set intake Fisher Bois-F Clewell Bois-C Fisher Clewell Bois-C

Based on ED,0 values
NTP (4)

Males, carcinomas 3.2x 10-7 5.4 x 10O 6.9x 10 1.4 x 105 4.5 x 104 1.3 x 10' 8.5 x 104 8.9 x 10-7
Males, adenomas + carcinomas 5.4x 10-7 9.3x 10A 125x 10 2.4 x 10-5 7.7x10 2.3x 10A 15x 10-7 1.5 x 10
Females, carcinomas 1.1 x 104- 22 x 10o 2.5 x 10-7 5.0x 10A 3.5x 107 5.4x 1077 3.1 x 104 3.2 x 10-7
Females, adenomas+carcinomas 2.6x 107 SOx 107 5.7 x 10-7 1.2 x 10-5 3.7 x 10 1.2 x 1- 7.0 x 10-7 7.3x 10-7

NCI (40)
Males carcinomas 1.4x 10-7 2.6x 1046 x 10-7 3.4x 10 s 1.4 x 10 6.5x 10-7 2.2 x 10A 1.9 x 10-7
Females, carcinomas 3.1 x 10-7 6.1 x lO7 8.4x10A 1.6x 10-6 4.6 x 10-7 1.5x17 9.9 x 10-9 9.2x10

Based on LED,0 values
NTP (4)

Males,carcinomas 5.1 x10-7 8.7x103 1.1 x10- 2.2x105 7.2x10A 2.1 x10- 1.4x10-7 1.4x10-
Males, adenomas+carcinomas 8.9X 10-7 1.Sx 10-5 1.9X 10-6 3.9x 10-5 1.3x 10-5 3.7 x 10-6 2.4x 10-7 2.5x 10-6
Females,carcinomas 2.1 xlO0-7 4.1 x10W 4.6x10-7 9.3x10A 3.0x10A 1.0X10-6 5.7x10-8 5.9x10-7
Females, adenomas + carcinomas 4.4x 10-7 8.4x 10A 9.5x 10-7 1.9 X 10o- 6.2 x 10A 2.1 x 10-6 1.2 x 10-7 1.2 x 10A

NC) (40)
Males,carcinomas 1.BXlO-7 3.4x10-6 6.3x10-7 1.2 x10-5 3.3x10-6 8.3x10-7 7.0x10A 6.6x10-7
Females, carcinomas 5.5x10A 1.1 X 10-6 1.SxlO07 2.8BxlO0- 7.9x10-7 2.7x10-7 1.7 x10-8 1.6x10-7

Based on lifetime consumption of contaminated water at 2 U/day. NTP analyses are based on Multistage-Weibull time-to-tumor analysis; NCI analyses are based on multistage model of degree 2. Fisher
(9) and Bois-F (30) doses are AUC in liver; Clewell (6) and Bois-C (29) doses are AUC in plasma. Bois did not analyze DCA-auc for the Fisher model.

expected for TCE (which is not very well
illuminated by analysis ofTCE dose-response
relationships, as discussed above).

Because of the unusual experimental
designs, no single study on either DCA or
TCA is suitable for the determination of a
lifetime cancer potency, but one can gain
some insight through pooling the results from
several studies, treating the differing duration
of the tests as different times of "interim"
scheduled sacrifice in a Multistage-Weibull
time-to-tumor analysis. TCA-auc and
DCA-auc values (Table 7) were obtained
from a version of the Fisher pharmacokinetic
model modified to accommodate uptake of
these compounds from drinking water
(9,30). In the case of DCA, a single dose-

time-response relationship could describe all
the liver tumor results among male mice, but
the inclusion of the single female data set
(15) led to a poor fit. For TCA, a single
equation fit all of the responses well, but
females were excluded (with little change in
estimated potency) for consistency with the
DCA analysis and for comparison with the
male mouse TCE gavage studies.

Figure 2 shows the resulting dose-response
curves for the expected frequency of liver carci-
nomas after 90 and 104 weeks (the durations
of the NCI and NTP studies, respectively) as a
function of increasing internal dose. Also plot-
ted are the actual TCE gavage responses
among NCI and NTP males, plotted as a
function of their metabolically generated inter-

nal doses. For the Fisher estimates ofTCA-auc
(Figure 2a), these responses are much higher
than would be expected if they were solely due
to metabolically generated TCA, judging from
the apparent potency of TCA when adminis-
tered directly. According to the TCA bioassay
curves, responses of about 60% would be
expected at daily TCA-auc levels of around
6,000 (mg-hr)/L, some 3- to 4-fold higher
than the estimated exposure to metabolically
generated TCA in the TCE gavage studies. In
contrast, the Bois-F estimates (Figure 2b) show
the TCE gavage results to be very dose to what
would be expected if they were due solely to
metabolically generated TCA.

For DCA, the dose estimates from the
Fisher model (Figure 2c) show metabolically
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Table 6. Linear method estimates of incremental risk per per pg/m3 of TCE in ambient air based on mouse liver tumors.

Dose metric
mg/kg314/day TCA-auc, (mg-hr)/L DCA-auc, (mg-hr)/L

Data set intake Fisher Bois-F Clewell Bois-C Fisher Clewell Bois-C

Based on ED10 values
NTP (4)

Males,carcinomas 3.2x104 2.1 x10-5 2.6x10- 5.6x10-5 1.8x105 5.0x104 3.6xl1-7 2.7x104
Males, adenomas + carcinomas 5.4 x 104 3.6 x 1O-5 4.5 x 104 9.6 x i0-5 3.0 x 10-5 8.5 x 1 04 6.2 x 10-7 4.7 x 10A
Females carcinomas 1.1 x110 8.5x104 9.5x10-7 2.2x10-5 1.3xlD-5 2.0x1D4 1.3x10-7 9.9x1-7
Females, adenomas + carcinomas 2.6 x 10A 1.9 x 10-5 2.2 x 104 4.6 x i0-5 1.4 x 10-5 4.6 x 104 3.0 x 10-7 2.3 x 10A

NCI (40)
Males,carcinomas 1.4x 104 1.0x105 6.9x 10-7 1.4x10-5 5.4x 104 2.4x 104 9.3x104 6.0x 10-7
Females,carcinomas 3.1 x10-7 2.3xl04 3.2x10-7 6.6x104 1.8x104 5.6xl1- 4.2x10- 2.9x107

Based on LED10 values
NTP (4)

Males,carcinomas 5.1 x104 3.3xl105 4.2x104 9.0xlD-5 2.8x10-5 7.9xl04 5.7x10-7 4.4x104
Males, adenomas + carcinomas 8.9 x 104 5.8 x 10-5 7.4 x 104 1.6 x 10-4 4.9 x 10-5 1.4 x 10D5 1.0x 104 7.7 x 104
Females carcinomas 2.1 x104 1.6x10-5 1.8x104 3.8x10-5 1.2x 105 3.8xl04 2.4x10-7 1.8x104
Females, adenomas + carcinomas 4.4 x 104 3.2 x i0o5 3.6 x 104 7.7 x 10-5 2.4 x 10-5 7.8 x 104 4.9 x 10-7 3.8 x 10-

NCI 140)
Males, carcinomas 1.8 x104 1.3 x 10-5 2.4 x 10D 4.7 x 10-5 1.3 x 1 0-5 3.1 x 04 3.0 x l0-7 2.0 x104
Females,carcinomas 5.5x10-7 4.2x10D 5.8xlD 7 1.1 x10-5 3.1 x104 9.9x10-7 7.2x103 4.9x10-7

Based on continuous lifetime exposure. Human breathing rates as in the applicable pharmacokinetic model or Ifor intakel 20 m3/day. NTP analyses are based on Multistage-Weibull time-to-tumor analysis;
NCI analyses are based on multistage model of degree 2. Fisher (91 and Bois-F 130) doses are AUC in liver; Clewell (6) and Bois-C 1291 doses are AUC in plasma. Bois did not analyze DCA-auc for the
Fisher model.

generated DCA to be markedly insufficient to
explain the TCE gavage tumors; doses some
10-fold higher are needed to generate compa-
rable responses when DCA is administered
directly. Under the Bois internal dose esti-
mates (Figure 2d), however, the amount of
metabolically generated DCA in the TCE
gavage studies is more than enough to
account for the observed tumors; indeed, a
third as much would seem to be sufficient,
and under this dosimetry it is not clear why
the TCE studies did not have nearly 100%
response, given the DCA estimated to have
been metabolically produced.

As with previous analyses, the outcome
depends markedly on which set of pharmaco-
kinetic results one employs. The dose depen-
dence of the fitted time-to-tumor relationships
is linear for directly administered TCA (as is
the time dependence), whereas that for DCA
is linear-quadratic with a substantial linear
contribution, although the time dependence is
about the third power of time.

Mouse Lung Tumors
Trichloroethylene has been shown to cause
increases in lung tumors in mice chronically
exposed by inhalation (22,37), although
increases are not found in all experiments,
despite similar exposures. Lung tumors have
not been seen to increase in gavage experi-
ments (4,40), and no lung tumor effect has
been seen in rats (3,4). Although lung tumors
appear in mice solely by inhalation exposure,
lung tumors are not the only tumors found to
be elevated in inhalation experiments; hepato-
cellular carcinomas have been seen in mice
exposed to TCE by inhalation (22,43), and
rats have been found to have increases in

Table 7. TCA and DCA drinking water experiments in mice-mouse liver tumors.

Conc.in TCA-auc DCA-auc
Bioassay water, g/L Mice with carcinomas Fisher Bois-F Fisher Bois-F

TCA in drinking water
Herren-Freund et al. (14) TCA 61 weeks

Male mice 0 0/22 0 0 0 0
5 7/22 5,138 4,406 63.3 45.0

Bull et al. (11) TCA 37 weeks 52 weeks
Male mice 0 0/35 0 0 0 0

1 2/11 1,290 1,106 15.9 11.3
2 3/11 4/24 2,252 1,931 27.7 19.7

Periera (15) TCA 52 weeks 81 weeks
Female mice 0 0/40 2/90 0 0 0 0

0.35 0/40 0/53 570 7.0
1.2 0/19 5/27 1,544 19.0
3.5 5/20 5/18 3,700 3,173 45.6 32.4

DCA in drinking water
DeAngelo et al. (13) DCA 60 weeks 75 weeks
Male mice 0 0/9 2/19 0 0

0.05 2/9 3/21 14.8 1.38
0.5 1/9 1/18 138.3 14.0
5.0 25/30 888.8 88.4

Herren-Freund et al. (14) DCA 61 weeks
Male mice 0 0/22 0 0

5.0 21/26 888.8 88.4
Daniel et al. (12) DCA 104 weeks

Male mice 0 2/20 0 0
0.5 15/24 138.3 14.0

Periera (15) DCA 52 weeks 81 weeks
Female mice 0 0/40 2/90 0

0.28 0/40 0/50 85.1
0.93 0/20 1/28 224.2
2.8 1/20 5/19 589.0

Bull et al.(11) DCA 37 weeks 52 weeks
Male mice 2 0/11 5/24 420.7 38.7

Fisher DCA-auc for DeAngelo et al. (13) accounts for reduced water consumption at 5 g/l; this is assumed to apply to the 5 g/L expo-
sure of Herren-Freund et al. (14). Bull et al. (11) data as reported in Bull (16). NTP analyses based on Multistage-Weibull time-to-
tumor analysis; NCI analyses based on multistage model of degree 2. Fisher (9) and Bois-F (30) doses are AUC in liver; Clewell (6) and
Bois-C 129) doses are AUC in plasma. Bois did not analyze DCA-auc for the Fisher model.
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kidney tumors following inhalation in some
experiments (22) but not in others (37).

The toxicology of TCE in the lung is dis-
cussed by Green (17). Attention has focused
on the role of cytotoxicity to mouse lung
Clara cells, which are highly metabolically
active compared to most cell types in the lung.
These cells evince a pattern of cytotoxicity fol-
lowing initial exposure, with a subsequent
recovery even upon continued exposure. In a
regime of inhalation exposure such as is prac-
ticed in cancer bioassays, however, a renewed
bout of cytotoxic response can be engendered
on each Monday following the cessation of
exposure over each weekend. It has been pro-
posed that this toxicity, and the regenerative
cell replication that it induces may be respon-
sible for the lung tumors in mice and that the
particular susceptibility of mice is attributable
to the fact that mouse Clara cells generate a
good deal of the metabolite CH by oxidative
metabolism of TCE, but they are relatively
deficient in chloral metabolic clearance (44).
Chloral has shown dastogenic activity in some
tests (16,39). It has been shown to cause the
same kind of vacuolization response in Clara
cells as does TCE (44).

It is difficult accurately to model the
concentrations of a metabolite such as CH

1.0 --- --~
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0.8 t

ci~+ NTP NCI
(D)
a X --

0.6 --

0

that is itself quickly metabolized to further
products, but both Clewell et al. (6) and Bois
(29) have provided estimates of chloral area-
under-the-curve (CH-auc) and maximum
concentration (CH-max) in lung. These
measures are considered internal dosimeters
for the dose-response analysis of the mouse
lung tumors generated by TCE exposure.

Tumor data from the mouse bioassays
showing lung tumor response are presented in
Table 8 along with relevant dose measures.
The Maltoni experiments are the same ones
in which liver tumors were observed, but no
information on co-occurrence of liver and
lung tumors among mice was presented.

The tumor data are plotted in Figure 3.
The elevations in lung tumor risk are seen to
be rather small and somewhat inconsistent
among experiments. Several data sets fail to
show a monotonic trend with increasing
dose. (Plots against exposure concentration
and CH-auc look very similar, since the vari-
ous potential dosimeters are more or less pro-
portional.) With such data, it is hard to
address the issue of nonlinearity and the pos-
sibility of a point within the observable range
at which a change in the underlying mode of
action may occur. To the extent that there are
consistent trends in some data sets, they show
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a more or less linear pattern. Best fitting
multistage models have only a linear term for
the Fukuda data sets and for the Maltoni
male Swiss mice; the Maltoni B6C3F, female
mice have a linear-quadratic fit, and only the
Maltoni Swiss females have a nonlinear best
fit. The two Maltoni B6C3F, male data sets
show no increase with dose.

The results of dose-response analysis are
shown in Table 9. For administered doses,
attention should be focused on the calcula-
tions assuming equivalence of lifetime aver-
aged pg/m3 (10). The human potencies
extrapolated from mouse lung tumors are
lower than for the other two prominent end
points, even when one considers extrapola-
tions based on administered dose. These are
lowered further when internal doses are
examined, although more so for the Bois
doses than for the Clewell doses. This reflects
the relatively lower doses in humans versus
mice for a given level of exposure (and
appears little affected by high-to-low dose
nonlinearity in CH internal dose versus expo-
sure concentration).

Unit risks for ingestion and drinking water
exposures based on route extrapolation of the
lung tumor risks were calculated but are not
shown in Table 9, since they are invariably
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Figure 2. Predictions of mouse liver tumor response for 90-week and 104-week exposure (smooth curves) based on a dose-time-response model fitted to TCA and DCA drinking
water bioassays together with mouse liver tumor responses observed in the NTP (4) and NCI (40) gavage studies of TCE (points), all plotted as a function of various internal dose
measures: (a) Fisher (9) estimates of TCA-auc; (b) Bois (30) estimates of TCA-auc based on the Fisher model; (c) Fisher (9) estimates of DCA-auc; (d) Bois (30) estimates of
DCA-auc based on the Fisher model.
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lower than those based on liver or kidney
tumors and since lung tumors only appeared
in experiments when TCE was encountered
by inhalation. It is also of interest that the
projected human inhalation risks by the linear
method from mouse liver tumors are greater
than those calculated above for lung, and
those from rat kidney tumor data are at least
roughly comparable. For both rat kidney
tumors and mouse liver tumors, inhalation
experiments did show some response in the
experimental animals, albeit not as marked as
from gavage administration.

Rat Kidney Tumors
The toxicity and carcinogenicity ofTCE to the
kidney is reviewed by Lash et al. (19). TCE
causes a low incidence of renal tubular cell ade-
nomas and carcinomas in rats exposed via corn
oil gavage (3,4). Although the tumors are few,
this is a repeatable finding (Tables 10 and 11).
Such tumors are historically rare in rats (0.4%
among corn oil gavage controls), and their
appearance among dosed animals is seen as
biologically significant. Maltoni et al. (22)
observed similar tumors in Sprague-Dawley
rats exposed to TCE by inhalation, although
Fukuda (37) found no renal tumors in female
Sprague-Dawley rats exposed to up to 425
ppm. The rat tumor incidence data are
tabulated in Tables 10 and 11.

TCE does not appear to cause kidney
tumors in either mice or hamsters. In particu-
lar, the extensive bioassay testing of mice has
not revealed any increase in kidney tumors,
despite the fact that mice produce as much if
not more of the key conjugative TCE
metabolite implicated for renal toxicity, S-
(1,2-dichlorovinyl)-L-cysteine (DCVC), and
they have as much chronic kidney toxicity in
lifetime bioassays as do rats. Although several
epidemiologic studies show no effect, one
study found increased kidney cancer in a ret-
rospective study of cardboard factory workers
(45). Wartenberg et al. (38) review the
increasing evidence for association of TCE
and human kidney cancer.

Although questions remain, it is generally
felt that toxic effects in the kidney are caused
by the reactive products of the further metab-
olism in the kidney of the products of the
conjugative metabolism ofTCE by the liver.
Specifically, the metabolite DCVC can either
be detoxified by formation of an N-acetyl
derivative or it can produce a highly reactive
thiol, S-(1,2-dichlorovinyl)thiol (DCVSH) as
a result of DCVC metabolism in the kidney
mediated by ,-lyase (19). These reactions are
known to take place in mice, rats, and
humans, although the quantitative extent of
their relative activity is difficult to characterize

(19). The thiol appears to be able to cause a
number of immediate toxic effects, including
alkylation of DNA and proteins, oxidative
stress, and mitochondrial dysfunction, which
in turn lead to genotoxicity, cytotoxicity, and
altered gene expression in renal tubular cells
(19). In some combination, these effects in
turn lead to the observed acute toxicity,
chronic toxicity, and tumorigenicity ofTCE
in the kidney. According to current evidence,
it does not appear that either the induction of
peroxisome proliferation or the syndrome of
a2p.-globulin protein-droplet nephropathy,
mechanisms that have been proposed as

Table 8. Mouse lung tumor incidences and doses.

LADE, LADD, Benign + CH-auc doses CH-max doses
Bioassay Sex/strain pg/mr3 mg/kg/day Malignant malignant Clewell Bois-C Clewell Bois-C
Fukuda et al. (37)
Inhalation (ppm), 107 weeks, 7 hr/day, 5 days/week

0 Females 0 0 1/49 6/49 0 0 0 0
50 ICR mice 56,000 99 3/50 5/50 0.8 0.95 0.20 0.14

150 168,000 297 8/50 13/50 2.4 2.85 0.45 0.41
450 504,000 889 6/46 11/46 7.9 8.60 1.6 1.20

Maltoni et al. (22)
Inhalation (ppm), 78 weeks, 7 hr/day, 5 days/week, followed until death

0 Males 0 0 10/90 0 0 0 0
100 Swiss mice 84,000 148 11/90 1.2 1.43 0.3 0.27
300 (BT305) 252,000 445 23/90 3.7 4.35 1.0 0.82
600 504,000 889 27/90 9.4 8.25 2.6 1.50

0 Females 0 0 15/90 0 0 0 0
100 Swiss mice 84,000 148 15/90 1.2 1.43 0.3 0.27
300 (BT305) 252,000 445 13/90 3.7 4.35 1.0 0.82
600 504,000 889 20/90 9.4 8.25 2.6 1.50

0 Males 0 0 2/90 0 0 0 0
100 B6C3F1 mice 84,000 148 2/90 1.2 1.43 0.3 0.27
300 (BT306) 252,000 445 3/90 3.7 4.35 1.0 0.82
600 504,000 889 1/90 9.4 8.25 2.6 1.50

0 Females 0 0 4/90 0 0 0 0
100 B6C3F1 mice 84,000 148 6/90 1.2 1.43 0.3 0.27
300 (BT306) 252,000 445 7/90 3.7 4.35 1.0 0.82
600 504,000 889 15/90 9.4 8.25 2.6 1.50

0 Males 0 0 16/90 0 0 0 0
100 B6C3F1 mice 84,000 148 9/90 1.2 1.43 0.3 0.27
300 (BT306bis) 252,000 445 12/90 3.7 4.35 1.0 0.82
600 504,000 889 9/90 9.4 8.25 2.6 1.50

Abbreviations: lADD, lifetime average daily dose; LADE, lifetime average daily exposure.Benign` tumors are adenomas; `Malignant`
tumors are adenocarcinomas for Fukuda et al. (37); and 'pulmonary tumors' are for Maltoni et al. 122). Pharmacokinetic models were
not modified for different strains and sexes. Clewell et al. 16) provided no internal dose estimates for 150 ppm; therefore his 100-ppm
value was multiplied by 1.5. Bois (29) did not allow for 78 weeks of exposure, so his estimates for CH-auc were multiplied by 78/104.
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Figure 3. Mouse lung tumor responses from TCE inhalation bioassays (Table 8) plotted as a function of lifetime average air concentration: (a) males; (b) females.
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Table 9. Linear method estimates of human incremental risk per pg/m3 of TCE in ambient air based on mouse lung
tumors.

Dose metric
LADE, CH-auc, (mg-hr)/L CH-max, mg/L

Data set pg/M3 Clewell Bois-C Bois-C

Based on ED10 values
Fukuda et al. (37)

ICR females, adenocarcinomas 2.9 x 10-7 6.6 x 10-9 4.1 x 10-9 1.3 x 10-9
ICR females, adenomas + adenocarcinomas 3.5 x 10-7 8.0 x 10-9 4.9 x 10-9 1.5 x 10-9

Maltoni et al. (22)
Swiss males, pulmonary tumors 5.1 x 10-7 1.0 x 108 7.5 x 1 09 1.7 x 10-9
Swiss females, pulmonary tumors 1.9 x 10-7 3.8 x 10-9 2.8 x 10-9 6.5 x 10-10
B6C3F1 males, pulmonary tumors (BT306) 2.1 x 10-7 4.4 x 10-9 3.1 x 10-9 7.3 x 10-10

Based on LED10 values
Fukuda et al. (37)

ICR females, adenocarcinomas 5.7 x 10-7 1.4 x 10-8 8.1 x 10-9 2.5 x 10-9
ICR females, adenomas + adenocarcinomas 7.1 x 10-7 1.7 x 1 0.8 1.0 x 108 3.0 x 10-9

Maltoni et al. (22)
Swiss males, pulmonary tumors 7.5 x 10-7 1.6 x 104 1.1 x 10-8 2.5 x 10-9
Swiss females, pulmonary tumors 2.8 x 10-7 6.1 x 10-9 4.0 x 10-9 9.2 x 10~10
B6C3F, males, pulmonary tumors (BT306) 3.6 x 10-7 7.9 x 1 09 5.2 x 10-9 1.2 x 10-9

Clewell et al. (6) provide no CH-max estimate for humans. Bois (29) estimated human CH-max = 5.5 x 10-5 mg/L during 1 ppm
inhalation.

Table 10. Rat kidney tumor incidences and doses.

LADD, LADE, Benign + Thiol doses
Bioassay Sex/strain mg/kg/day pg/m3 Malignant malignant Clewell Bois-C

NTP (4)
Gavage, 7 days/week, 104 weeks
Untreated control Males 0 0/49 0 0
Corn oil control F344 0 0/48 0/48 0 0
500 mg/kg/day 357 0/49 2/49 32 2,800
1,000 mg/kg/day 714 3/49 3/49 73.6 7,700
Untreated control Females 0 0/49 0 0
Corn oil control F344 0 0/50 0/50 0 0
500 mg/kg/d 357 0/49 0/49 32 2,800
1,000 mg/kg/d 714 1/48 1/48 73.6 7,700

Maltoni et al. (22)
Inhalation, 7 hr/day, 5 days/week, 104 weeks, ppm

0 Males 0 0 0/135 0 0
100 Sprague-Dawley 95 112,000 0/130 0.31 57
300 238 336,000 0/130 8.4 990
600 567 672,000 4/130 26.1 4,200

"Malignant` tumors are renal tubular cell adenocarcinomas; "benign" tumors are adenomas. Clewell (6) estimates from his Table 7
are multiplied by 104/78 to account for 104-week rather than 78-week duration of the Maltoni et al. (22) experiment on rats. Bois-C
doses from Bois (30).

Table 11. Kidney tumors from NTP multistrain gavage study of rats.

Renal tubular cell adenocarcinomas
Untreated Vehicle 500 1,000

Sex/strain controls controls mg/kg/day mg/kg/day
Males ACI 0/49 0/50 1/49 0/49

August 0/50 0/50 1/50 0/49
Marshall 0/49 0/49 0/50 1/47
Osborne-Mendel 0/50 0/50 0/50 1/50
F344/N 0/49 0/48 0/49 3/49

Male total 0/247 0/247 2/248 5/244
Females ACI 0/49 0/48 1/47 1/43

August 0/50 0/49 2/48 0/50
Marshall 0/49 0/50 1/48 1/44
Osborne-Mendel 0/50 0/50 0/50 0/49
F344/N 0/49 0/50 0/49 1/48

Female total 0/247 0/247 4/242 3/234
All 0/494 0/494 6/490 8/478

NTP (3) declared this study to be "inadequate" because of problems in data reporting. The results are presented here for comparison
to the outcomes of the NTP (4) study on F344 rats, which are also tabulated. "Malignant" tumors are renal tubular cell adenocarcino-
mas; "benign" tumors are adenomas. Clewell (6) estimates from his Table 7 are multiplied by 104/78 to account for 104-week rather
than 78-week duration of the Maltoni et al. 1221 experiment on rats. Bois-C doses from Bois 1301.

causes of rat kidney tumors, are operative in
the case ofTCE (19).

Clewell et al. (6) and Bois (29) in his
reanalysis of the Clewell pharmacokinetic
model have produced estimates of the reactive
thiol production in rat and human kidneys at
relevant dose levels (Table 10), and these are
used in the following quantitative analysis. The
Clewell and Bois-C estimates are quite differ-
ent, almost exactly 100-fold different. The rea-
son for this discrepancy is not apparent
without detailed examination of the models.
The wide discrepancy is repeated in the human
kidney thiol dose estimates (Table 3) and so
the relative doses in rats and humans-the key
to the impact on TCE carcinogenicity projec-
tion-are similar for the Clewell and Bois esti-
mates. It is also of interest to note that the
thiol doses estimated for the inhalation expo-
sures of the Maltoni et al. (22) study evince a
good deal of nonlinearity with exposure level.

The key data for rat kidney tumors are
those from the male F344 rats in the 1990
NTP gavage bioassay (4) (Table 10). With
only three adenocarcinomas, however, the
role of statistical fluctuation in response can
be appreciable, and little information can be
gleaned about dose-response shape. To aid
in interpretation, data are examined from a
1988 NTP gavage study on four additional
strains of rats (3) (Table 11) conducted
according to the same protocol as the 1990
study. It should be noted that the NTP
declared this study to be "inadequate" due to
problems in data reporting and because of
some early mortality. These data are exam-
ined here for comparison with the analysis of
the 1990 F344 rat study and to provide per-
spective on the shape of the dose-response
relationship. The 1990 F344 rat study
should be emphasized in drawing con-
clusions, however.

Although no adenocarcinomas occurred
among 494 controls (including all 5 rat strains
of both sexes), all experiments (excepting
female Osborne-Mendel rats) had at least one
such tumor among the dosed animals.
Although responses are uniformly low (and
they fluctuate accordingly), there is no marked
difference among sexes or strains, and the pat-
tern of low-frequency induction of the kidney
tumors appears repeatable among the data
sets, showing, in the aggregate, no tendency
toward nonlinearity in the observed range.

Dose-Response Analysis
The standard reliance on 10% extra risk to
define the PoD appears inappropriate for rat
kidney tumors. This point is above rather
than below all the observations, and (on the
evidence of Table 1 1) an ongoing gradual
drop in risk with decreasing dose is continu-
ing in the range of 1-10% risk. Accordingly,
for the analysis of the rat kidney tumors, an
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alternative PoD based on 1% extra risk, i.e.,
on the EDO1 and LEDO1, is employed.

Although time-to-tumor data are available,
the low number of responses makes it statisti-
cally difficult for the program MULTIWEIB (23)
to converge to stable estimates, so multistage
models fit with GLOBAL86 (25) were
employed. (Time-to-tumor analysis for male
F344 rats bearing both adenomas and adeno-
carcinomas yielded EDIO and LED1o values
about half as great as the multistage model.)
The resulting PoD doses are listed in Table 12.

The unit risks resulting from applying the
U.S. EPA linear dose-response method to
these values are shown in Tables 13 and 14.
(Incremental risks per lig/L of contaminated
drinking water can be obtained by dividing the
entries of Table 13 by 35,000.) As adminis-
tered dose defaults, the gavage doses use
mg/kg314/day scaling of intake, while the
inhalation data are projected to humans on the
basis of equal risk per pg/m3 of air concentra-
tion. As discussed in "Methods" (under
"Cross-Species Equivalency of Doses"), two
approaches have been used regarding how to
project risks across species on the basis of
amounts of metabolites generated in target tis-
sues: to assume equal carcinogenic effect from
equal lifetime average daily production per unit
of tissue, and to assume equal effect when daily
production is proportional to the 3/4-power of
body mass. These are the internal dose versions
of the external-dose alternative scaling methods
commonly termed body-weight scaling and
surface-area scaling, respectively. The issues
surrounding cross-species dose scaling for
internal and external doses have been exten-
sively discussed elsewhere (26-28,32-36,41).
For the present article, it is sufficient to present
the consequences of both approaches.
Following prior U.S. EPA practice (32,33),
the unit risk values tabulated in Tables 13 and
14 are calculated on the assumption that daily
production of reactive thiol in the kidney gives
equal risk in humans and rats when amounts
are in proportion to the 3/4-power of body
weight. [In practice, this is calculated by pre-
suming that doses based on daily milligrams of
thiol per gram of kidney are riskier in humans
by a factor equal to the 4th root of the ratio of
human to rat body weights, yielding unit risks
that are (70/0.35)1/4 or 3.76-fold higher than
those obtained without this scaling assump-
tion.] Projections based on equivalence of mil-
ligrams of thiol produced daily per gram of
kidney (the body-weight scaling alternative)
can be obtained by dividing the tabulated val-
ues by 3.76. That is, under this view, low-dose
potencies are estimated to be 3.76-fold lower
than shown in the thiol-dose columns of
Tables 13 and 14.

The results show that there does not seem
to be a pronounced difference in the
carcinogenic potency in rat kidney between

inhalation and gavage administration of TCE.
The results based on the pooled data over five
strains and both sexes of rats do not differ
much from those based on the male F344 rats
(4). The human incremental risk projections
from rat kidney tumors are generally lower by
one to three orders of magnitude than those
from the analysis of mouse liver tumors.

Impact of Uncertainty
in Internal Doses
Aside from the evident dependence of the
calculations on which particular source of
pharmacokinetic internal dose estimation is
employed, the projections based on each
source are uncertain because the physiological
parameters embodied in the model are them-
selves not known with absolute precision.
Bois (29) has conducted a Bayesian uncer-
tainty analysis of the Clewell et al. (6) phar-
macokinetic model, as previously described,
and the results of this analysis yield approxi-
mately log-normal distributions for estimates
of the internal dose measures that result from
specific exposure scenarios. It is the median of
each such distribution that is used above as
one of the Bois-C internal dose estimates.
Now the impact of the spread of these distri-
butions, measured as the geometric standard
deviation (GSD) will be considered.

It should be emphasized that this charac-
terization of uncertainty is based solely on the
impact of uncertainty about the values of the
Clewell model physiological and metabolic
parameters; it does not address questions
about the mathematical structure of the
model as a description of the underlying bio-
logical processes, the differences between the
Clewell model and other models, or the

appropriateness of the dose measures selected
to describe relative cancer risk in animals and
humans. Importantly, it also does not include
estimates of the impact of variation among
individual humans in rates of uptake and
metabolic processing ofTCE.

Bois (29) reports separate uncertainty dis-
tributions for each experimental exposure
using an independent set of iterations that
draw values for the various parameters from
their respective uncertainty distributions. But
since the animals are drawn from the same
pool, the same true parameter values apply to
all experimental groups, and the variations in
estimated internal dose should be largely par-
allel among dose groups, shifting the entire
curve of response versus internal dose up or
down along the dose axis as parameters yield-
ing higher or lower target-organ doses are
considered. In practice, I use the uncertainty
distribution of the internal dose at the lowest
experimental exposure as an adequate approx-
imation of the uncertainty in low internal-
dose potency. The placement of the lowest
response on the internal dose scale is the
prime determinant of the ED10, on which the
dose-response analysis is based.

The human internal dose is also uncer-
tain, and Bois (29) has estimated uncertain-
ties in the dosimeter estimates for human
environmental exposures as well. These tend
to be larger than the animal uncertainties
because of the more indirect means that are
necessary for developing the human models.

The low-dose potency in humans (when
projected from animals based on toxic equiv-
alency of the internal dose) ultimately
depends on the ratio of internal doses in
animals and humans. Thus, the uncertainty

Table 12. LEDO, and EDO1 values based on rat kidney tumors.

Administered, LADE, Kidney thiol dose, mg/L/day
Data set mg/kg/day pg/m3 Clewell Bois-C

EDO values
NTP (4) gavage

Males, adenocarcinomas 527 54.2 5,670
Males, adenomas + adenocarcinomas 103 10.1 1,005

NTP (3,4) 5 strains pooled
Males, adenocarcinomas 422 39.0 3,663
Both sexes, adenocarcinomas 368 36.2 3,599

Maltoni et al. (22) inhalation
Males, adenocarcinomas 558,000 21.6 3,477

LEDO values
NTP (4) gavage

Males, adenocarcinomas 123 11.3 1,030
Males, adenomas + adenocarcinomas 53 5.25 522

NTP (3,4) 5 strains pooled
Males, adenocarcinomas 215 21.0 2,085
Both sexes, adenocarcinomas 244 24.1 2,389

Maltoni et al. (22) inhalation
Males, adenocarcinomas 349,000 8.38 1,090

Based on multistage model of degree 2 for gavage studies and 3 for inhalation. Zero dose groups are vehicle controls. Multistage-
Weibull analysis of NTP male adenomas + adenocarcinomas yields values about 1/2 as large. NTP (31 declared this study to be `inad-
equate` because of problems in data reporting. The results are presented here for comparison to the outcomes of the NTP (41 study on
F344 rats, which are also tabulated. "Malignant" tumors are renal tubular cell adenocarcinomas; "benign" tumors are adenomas.
Clewell 161 estimates from his Table 7 are multiplied by 104/78 to account for 104-week rather than 78-week duration of the Maltoni
et al. (22) experiment on rats. Bois-C doses from Bois (30).
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geometric standard deviations GSDH and
GSDA) is itself a log-normal distribution with
a GSDpOT (for potency) equal to

GSDpOT = expV(lnGSDH)2 + (lnGSDA)2 .

Table 13. Linear method estimates of incremental risk per mg/kg/day of TCE intake based on rat kidney tumors.

Dose metric
mg/kg314/day Kidney thiol dose per kg314

Data set intake Clewell Bois-C

Based on EDo1 values
NTP (4) gavage

Males, adenocarcinomas 7.1 x 10-5 9.7 x 104 1.4x 104
Males, adenomas + adenocarcinomas 3.7 x 104 5.2 x 10-5 7.9 x 10A

NTP (3,4), 5 strains pooled
Males, adenocarcinomas 8.9 x 10-5 1.4 x 1 0-5 2.2 x 10-
Both sexes, adenocarcinomas 1.0 x 104 1.5 x 10-5 2.2 x 1 0.6

Maltoni et al. (22) inhalation
Males, adenocarcinomas 2.4 x 10-5 2.3 x 10A

Based on LEDO1 values
NTP (4) gavage

Males, adenocarcinomas 3.1 x 104 4.7 x 10-5 7.7 x 106
Males, adenomas + adenocarcinomas 7.1 x 10-4 1.0 x 10-4 1.5 x 10-5

NTP (3,4) 5 strains pooled
Males, adenocarcinomas 1.8 x 10'4 2.5 x 1 05 3.8 x 104
Both sexes, adenocarcinomas 1.5 x 10 4 2.2 x 1 o5 3.3 x 1'0I

Maltoni et al. (22) inhalation
Males, adenocarcinomas 6.3 x 10-5 7.2 x 104

Unit incremental risks per pg/L of drinking water (assuming lifetime consumption of 2 L/day) may be obtained by dividing the tabled
entries by 35,000. The tabled numbers for kidney thiol doses are based on adjusting the risk from a given daily mg thiol production per
g of kidney by the 4th root of the ratio of rat to human body weight, i.e., by (0.35/70)l14 Projections not scaled by this factor (i.e.,
based on equivalent daily milligram thiol per gram of kidney) may be obtained by dividing the tabled numbers by 3.76. NTP (3)
declared this study to be "inadequate" because of problems in data reporting. The results are presented here for comparison to the
outcomes of the NTP (4) study on F344 rats, which are also tabulated. "Malignant" tumors are renal tubular cell adenocarcinomas;
"benign" tumors are adenomas. Clewell (6) estimates from his Table 7 are multiplied by 104/78 to account for 104-week rather than
78-week duration of the Maltoni et al. (22) experiment on rats. Bois-C doses from Bois (30).

Table 14. Linear method estimates of incremental risk per pg/m3 of TCE in ambient air.

Dose metric
LADE, mg/kg3/4/day Kidney thiol dose per kg3/4

Dataset pg/M3 intake Clewell Bois-C

Based on EDO0 values
Gavage
NTP (4)
Males, adenocarcinomas 2.0 x 10 1.0 x 1i0-9 1.4 x 1 0-10
Males, adenomas + adenocarcinomas 1.1 x 107 5.6 x 10-9 7.7 x 10-10

NTP (3,4), 5 strains pooled
Males, adenocarcinomas 2.6 x 1'4 1.4 x 10-9 2.1 x 10-10
Both sexes, adenocarcinomas 2.9 x 1W0 1.5 x 10-9 2.1 x 10-10

Inhalation
Maltoni et al. (22)
Males, adenocarcinomas 1.8 x 10- 2.6 x 10-9 2.2 x 1010

Based on LEDO0 values
Gavage
NTP (4)
Males, adenocarcinomas 8.7 x 10A 5.0 x 10-9 7.5 x 10~10
Males, adenomas + adenocarcinomas 2.0 x 10-7 1.1 X 10A 1.5 x 10-9

NTP (3,4), 5 strains pooled
Males, adenocarcinomas 5.0 x 10A 2.7 x 10-9 3.7 x 1010
Both sexes, adenocarcinomas 4.4 x 10A 2.3 x 10-9 3.2 x 10-10

Inhalation
Maltoni et al. (22)
Males, adenocarcinomas 2.9 x 10 8 6.7 x 10-9 7.1 x 10-10

The table numbers for kidney thiol doses are based on adjusting the risk from a given daily milligram thiol production per gram of kid-
ney by the 4th root of the ratio of rat to human body weight, i.e., by (0.35/70)1/4. Projections not scaled by this factor (i.e., based on
equivalent daily mg thiol per g of kidney) may be obtained by dividing the tabled numbers by 3.76. NTP (3) declared this study to be
"inadequate" owing to problems in data reporting. The results are presented here for comparison to the outcomes of the NTP (4) study
on F344 rats, which are also tabulated. "Malignant" tumors are renal tubular cell adenocarcinomas; "benign" tumors are adenomas.
Clewell (61 estimates from his Table 7 are multiplied by 104/78 to account for 104-week rather than 78-week duration of the Maltoni
et al. (22) experiment on rats. Bois-C doses from Bois (30).

Table 15 shows the application of this
principle to extrapolations based on the Bois-C
internal dose estimates. For a log-normal dis-
tribution, approximately 95% of the values are
contained in the span defined by multiplying
or dividing the geometric mean by the square
of the GSD. It is evident from the approxi-
mate uncertainty propagation undertaken here
that the human unit risks based on kidney
cancer and the reactive thiol tissue doses are
quite uncertain, being reasonably placed
within a factor of 74 higher or lower than the
central estimate. The projections of lung
tumor risk based on CH production are yet
more uncertain. The uncertainty in human
risks based on analysis of mouse liver tumors
and using either TCA or DCA as an internal
dosimeter is moderate; the analysis implies a
range of about a factor of 10 higher or lower.

Discussion and Conclusions
The foregoing analyses have provided a large
number of potential bases for an estimate of
the carcinogenic potency ofTCE in humans.
The aim has been to examine the alternative
approaches and to explore the consequences of
assumptions and methodological choices. The
alternatives are not all equally compelling; the
present artide has laid out an array of analyti-
cal paths for further careful interpretation in
the context of our knowledge of the biological
processes underlying the disposition ofTCE in
the body and toxic actions in the tissues. A sec-
ond objective of the present artide is to exam-
ine the patterns of dose and tumor response
for evidence bearing on nonlinear modes of
carcinogenic action. Ultimately, the decision
to follow the linear or nonlinear approach in
the proposed new U.S. EPA guidelines (10)
depends on understanding of underlying bio-
logical mechanisms, but information on non-
linear behavior in the range of observable
tumor response can inform the interpretation
and judgments ofsuch mechanistic data.

The most recent U.S. EPA analysis of
TCE potency (2) recommended a unit risk
for lifetime inhalation of contaminated air of
1.7 x 10- per gg/m3 on the basis of mouse
lung tumors and an estimate of the fraction
of inhaled TCE that is metabolized. Some of
the linear method analyses presented herein
based on administered dose suggest a similar,
although in some cases slightly higher, value.
[The most sensitive administered dose basis,
for example, is that for combined liver adeno-
mas and adenocarcinomas in male mice from
the NTP (4) gavage bioassay (Table 6),
which lead to an estimated inhalation unit
risk of 8.9 x 106 per pg/m3 if based on linear
projection from the LEDI0, a value 5.2-fold
higher than the former number.] The differ-
ence is due to several factors, including the
use of different animal data and tumor
responses, the use of time-to-tumor methods
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in this projection is the uncertainty in the
ratio of two uncertain quantities, the uncer-
tain internal dose values in animals and
humans. The uncertainty in the product (or
ratio) of two log-normal distributions H and
A (for Human and Animal, with specified
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to allow for intercurrent mortality, and the
slight differences in default methodology
between the 1986 and 1996 U.S. EPA
guidelines.

The major change since the previous U.S.
EPA analysis, however, is the advent of phar-
macokinetic models that estimate the target-tis-
sue exposures of key metabolites thought to be
responsible for the carcinogenic actions ofTCE
in animals. These models are evolving, and a
major task of the present artide is to examine
their potential consequences as currently for-
mulated, recognizing that internal dose estima-
tion will improve with further work.

The most striking conclusion is that the
alternative models sometimes estimate sub-
stantially different values for internal doses
corresponding to exposure regimes of interest
to the risk analysis. Patterns of nonlinearity of
metabolic activity and relative internal doses
arising from different routes of administration
can also differ substantially among model
implementations. The fact that the Bayesian
updating conducted by Bois (29,30), which is
based on assessment of the performance of the
models in simulating data on pharmacokinetic
outcomes, can substantially alter model char-
acteristics and predictions is cause for concern
regarding the robustness of estimation of key
metabolic parameters.

The immediate consequence of these
differences is that it is necessary to run a num-
ber of parallel analyses using the different esti-
mates from each model. This makes it
difficult to draw firm conclusions when phe-
nomena of interest are inconsistent among
models. For instance, the question of whether
metabolically generated TCA or DCA can
account for the mouse liver tumors observed
from TCE gavage is difficult to address, since
the compatibility of outcomes of TCA and
DCA drinking water bioassays with the TCE
gavage assays depends on which set of internal
dose estimates is being considered.

In view of these differences among
models, it is perhaps surprising that employ-
ing internal dosimeters in the risk analysis
does not make more difference to the final
outcome. Although there are some substantial
impacts (and model-dependent differences in
impacts) to consider, the differences among
models in description of animal and human
pharmacokinetics tend to vary in parallel, and
they are often in approximate agreement
regarding projected human risks.

Nonlinear pharmacokinetics are most
pronounced in the activity of the oxidative
pathway in mouse gavage studies in which
liver tumors were observed, and the pattern is
in the direction of less efficient generation of
TCA and DCA at bioassay doses than at
lower exposure levels. The effect on high-to-
low-dose extrapolation (all else being equal)
is to raise the risk associated with lower doses
compared to an administered dose analysis
that does not account for this nonlinearity.
Within the range of observation of rat kidney
tumors, there is evidence of substantial non-
linearity of reactive thiol production. This is
of the opposite pattern, with higher doses
yielding proportionally more thiol exposure
to the kidneys. To the extent that this non-
linearity extends below the observed range, it
will tend to render lower exposures less risky,
and the low estimates of human risk pro-
jected from rat kidney tumors on the basis of
thiol doses are in part a reflection of this.

The second aspect of the impact of internal
dosimetry is that ofdifferences between experi-
mental animals and humans in the relative
internal doses produced by TCE exposures.
Interpretation of these results is hampered by
uncertainty regarding the levels of internal
dose that are expected to be equally carcino-
genic in different species, and the results pre-
sented here are contingent on the assumptions
about such equivalence. To a large degree, the
pharmacokinetic analyses show humans and

animals not to be radically different in internal
dose levels for a given administered amount of
TCE. Human risk projections based on mouse
liver tumors and either TCA-auc or DCA-auc
as a dose measure tend to lead to higher risk
levels by a few fold, reflecting that humans
have as high or higher areas-under-the-curve or
these stable metabolites than mice after similar
exposures. For instance, the linear method
inhalation unit risk based on the male mouse
liver adenomas and adenocarcinomas, when
based on the Fisher estimates of TCA-auc, is
5.8 x 10-5 per gg/m3, which is 6.5-fold higher
than that based on administered doses, while
that based on the Clewell TCA-auc estimates
is 1.6 x 104 per g/m3, or 18-fold higher than
that based on administered dose (Table 6). On
the other hand, projections of liver tumor risk
based on DCA-auc are similar to or slightly
lower than those based on administered dose;
that based on the Clewell DCA-auc estimates
is 1.0 x 10-6 per pg/m3, nearly an order of
magnitude less.

Examination of the dose-response curves
with respect to TCA and DCA attempts to
compare bioassays by similar and different
routes of administration, and consideration of
the apparent potency of TCA and DCA
when administered to mice all failed to pro-
vide a basis for preferring one metabolite over
the other as a basis for the mouse liver
tumors. This matter will have to be addressed
on mechanistic grounds (16). On the other
hand, the analysis shows that, at least accord-
ing to current pharmacokinetic modeling of
these metabolites, the choice makes relatively
little practical difference in the ultimate risk
estimation, as TCA and DCA levels are
highly correlated with one another. Changes
in the view of the relative amounts of these
metabolites produced in humans would have
considerable potential impact however.
Interpretation of the projection of mouse
liver tumor risk to humans should be

Table 15. Approximate uncertainty analysis based on log-normal error.

Uncertainty in potencies based on the Bois (29) internal dose estimates (Bois-C estimates)
Uncertainty in Uncertainty in Uncertainty in

animal internal dose, human internal dose, human potency,
Human potency based on GSDA GSDH GSDPOT
Mouse liver, TCA-auc 2.1 2.4 3.2
Mouse liver, DCA-auc 2.7 2.2 3.6
Rat kidney, thiol 3.4 6.2 9.0
Mouse lung, CH-auc 3 9 11.7
Mouse lung, CH-max 3.5 9 12.5

Factor different from median estimate
Percentile of potency uncertainty distribution

Human potency based on 1 2.5 5 10 25 50 75 90 95 97.5 99

Mouse liver, TCA-auc 1/15 1/10 1/7 1/4.4 1/2.2 1 2.2 4.4 7 10 15
Mouse liver, DCA-auc 1/20 1/12 1/8 1/5 1/2.4 1 5 5 8 12 20
Rat kidney, thiol 1/170 1/74 1/37 1/17 1/4.4 1 4.4 17 37 74 170
Mouse lung, CH-auc 1/300 1/120 1/56 1/23 1/5.2 1 5.2 23 56 120 300
Mouse lung, CH-max 1/360 140 1/63 1/25 1/5.4 1 5.4 25 63 140 360
See text for additional information.
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tempered by the dependence on source of
pharmacokinetic doses and on the analysis of
uncertainty within models described in Table
15. As with all risk analyses based on target-
organ doses, the projection to humans
implicitly assumes cross-species site concor-
dance, an assumption that has proven to have
limited utility in carcinogen risk assessment.

It is the projection to humans of mouse
liver tumor risks, however, that poses the most
concern. The projected risk levels are higher
than those from the mouse lung or rat kidney
tumors, and the added consideration of inter-
nal dosimetry tends to raise the risk projections
for mouse liver tumors while lowering them
(by an order of magnitude or more) for the
mouse lung and rat kidney tumors. One must
note the uncertainty in the impact of internal
dosimetry for the lung and kidney tumors,
however (Table 15). Moreover, if a nonlinear
approach is taken to the liver tumors but not
to the rat kidney tumors (on the grounds of
genotoxicity of DCVC), then the relative
importance to low human doses could change.

It may appear that the analysis herein
focuses on the EPA linear method of
dose-response analysis, but in fact both the
linear and nonlinear methods, when based on
observations of tumor risk, share the same
PoD, and the calculations herein of EDIO val-
ues can be used to determine margins of
exposures against 10% elevation in tumor risk
as well as for linear low-dose extrapolation. It
is more accurate to say that the emphasis has
been on analysis of the observations regarding
tumor response, while questions of underly-
ing mechanisms, their potential nonlinearity
in dose-response patterns, and the determi-
nation of dose levels associated with precursor
biological responses that may be without
appreciable effect on secondary carcinogenesis
are not considered. These important ques-
tions must be addressed in a full risk analysis
of TCE carcinogenicity, however, of which
the present article addresses only one aspect.

Nonetheless, the rationale behind the non-
linear method is that certain underlying mech-
anisms should generate steep dose-response
curves and that a "break" between dose ranges
that are acting to elevate cancer risk and those
that are not can be identified. The steepness of
the dose-response curve in the observable
range is among the criteria used in determin-
ing the size of the acceptable Margin of
Exposure (1J). It is noteworthy, then, that the
observable parts of the dose-response relation-
ships for the tumors engendered in experimen-
tal animals by TCE exposure show little sign
of nonlinearity and evince little basis to iden-
tify dose ranges in which basic shifts in under-
lying biological processes are at work. Any
invocation of nonlinearity in the TCE tumor
responses, and any identification of the dose
levels at which mechanisms operate at a level

insufficient to raise carcinogenicity concerns
will have to be based on studies of mechanisms
of carcinogenic action, and such points will fall
somewhere below the range that is observed in
current animal bioassays. From this point of
view, it is unfortunate that the mouse liver
tumor studies, which are key to estimates of
human risk, include only rather high doses
with high responses and lack the series of doses
that would allow better characterization of the
shape of this critical dose-response curve.

REFERENCES AND NOTES

1. U.S. EPA. Health Assessment Document for Trichloroethylene.
Final Report. EPA/600/8-82/006F. Washington, DC:U.S.
Environmental Protection Agency, 1985.

2. U.S. EPA. Addendum to the Health Assessment Document for
Trichloroethylene: Updated Carcinogenicity Assessment for
Trichloroethylene. External Review Draft EPA/600/8-82/006FA.
Washington, DC:U.S. Environmental Protection Agency, 1987.

3. NTP. NTP Technical Report on the Toxicology and
Carcinogenesis Studies of Trichloroethylene (CAS No. 79-01-6)
in Four Strains of Rats (ACI, August, Marshall, Osborne-Mendel)
(Gavage Studies). NTP TR 273. Research Triangle Park, NC:
National Toxicology Program, 1988.

4. NTP. Carcinogenesis Studies of Trichloroethylene (Without
Epichlorohydrin) (CAS No. 79-01-6) in F344/N Rats and B6C3F1
Mice (Gavage Studies). NTP TR 243. Research Triangle Park,
NC:National Toxicology Program, 1990.

5. Allen BC, Fisher JW. Pharmacokinetic modeling of trichloro-
ethylene and trichloroacetic acid in humans. Risk Anal
13:71-86 (1993).

6. Clewell HJ Ill, Gentry PR, Covington TR, Gearhart JM.
Development of a physiologically based pharmacokinetic model
of trichloroethylene and its metabolites for use in risk assess-
ment. Environ Health Perspect 1081suppl 2):283-305 (2000).

7. Clewell HJ Ill, Gentry PR, Gearhart JM, Allen BC, Andersen ME.
Considering pharmacokinetic and mechanistic information in
cancer risk assessments for environmental contaminants:
examples with vinyl chloride and trichloroethylene.
Chemosphere 31:2561-2578 (1995).

8. Fisher JW, Allen BC. Evaluating the risk of liver cancer in
humans exposed to trichloroethylene using physiological
models. Risk Anal 13:87-95 (1993).

9. Fisher JW. Physiologically based pharmacokinetic models for
trichloroethylene and its oxidative metabolites. Environ Health
Perspect 108)suppl 2):265-273 (2000).

10. U.S. EPA. Proposed Guidelines for Carcinogen Risk Assessment.
EPA/600/P-92/003C. Washington, DC:U.S. Environmental
Protection Agency, 1996.

11. Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ. Liver
tumor induction in B6C3F1 mice by dichloroacetate and
trichloroacetate. Toxicology 63:341-359 (1990).

12. Daniel FB, DeAngelo AB, Stober JA, Olson GR, Page NP.
Hepatocarcinogenicity of chloral hydrate, 2-chloroacetaldehyde,
and dichloroacetic acid in the male B6C3F1 mouse. Fundam
AppI Toxicol 19:159-168 (1992).

13. DeAngelo AB, Daniel FB, Stober JA, Olson GR. The carcino-
genicity of dichloroacetic acid in the male B6C3F1 mouse.
Fundam AppI Toxicol 16:337-347 (1991).

14. Herren-Freund SL, Pereira MA, Khoury MD, Olson G. The car-
cinogenicity of trichloroethylene and its metabolites,
trichloroacetic acid and dichloroacetic acid, in mouse liver.
Toxicol AppI Pharmacol 90:183-189 (1987).

15. Pereira MA. Carcinogenic activity of dichloroacetic acid and
trichloroacetic acid in the liver of female B6C3F1 mice. Fundam
AppI Toxicol 31:192-199 (1996).

16. Bull RJ. Mode of action of liver tumor induction by trichloro-
ethylene and its metabolites, trichloroacetate and dichloroac-
etate. Environ Health Perspect 108(suppl 2):214-259 (2000).

17. Green T. The pulmonary toxicity and carcinogenicity of trichloro-
ethylene: species differences and modes of action. Environ
Health Perspect 108(suppl 2):261-264 (2000).

18. Lash LH, Fisher JW, Lipscomb J, Parker JC. Metabolism of
trichloroethylene. Environ Health Perspect 108(suppl 2):177-200
(2000).

19. Lash LH, Parker JC, Siegel Scott C. Modes of action of
trichloroethylene for kidney tumorigenesis. Environ Health
Perspect 108(suppl 2):255-240 (2000).

20. Barton HA, Clewell HJ Ill. Evaluating noncancer effects of
trichloroethylene: dosimetry, mode of action, and risk assessment.
Environ Health Perspect 108(suppl 2):323-334 (2000).

21. Henschler D, Romen W, Elasser HM, Reichert D, Eder E, Radwan
Z. Carcinogenicity study of trichloroethylene by longterm inhala-
tion in three animal species. Arch Toxikoi 43:237-248 (1980).

22. Maltoni C, Lefemine G, Cotti G, Perino G. Long-term carcino-
genicity bioassays on trichloroethylene administered by inhala-
tion to Sprague-Dawley rats and Swiss and B6C3F1 mice. Ann
NY Acad Sci 534:316-342 (1986).

23. Howe RB, Crump KS. MULTI-WEIB: A Computer Program to
Extrapolate Time to Tumor Animal Toxicity Data to Low Doses.
Ruston, LA:Clement Associates, 1991.

24. Krewski D, Crump K, Farmer J, Gaylor D, Howe R, Portier C,
Salsburg D, Sielken R, Van Ryzin J. A comparison of statistical
methods for low dose extrapolation utilizing time-to-tumor
data. Fundam AppI Toxicol 3:140-158 (1983).

25. Howe RB, Crump KS, Van Landingham C. GLOBAL86: A
Computer Program to Extrapolate Quantal Animal Toxicity Data
to Low Doses. Ruston, LA:K.S. Crump, 1986.

26. EPA. A cross-species scaling factor for carcinogen risk assess-
ment based on equivalence of mg/kg3x4/day. Fed Reg
57:42152-42173 (1992).

27. Rhomberg LR. What constitutes 'dose'? (Definitions). In: Low-
Dose Extrapolation of Cancer Risk: Issues and Perspectives
(Olin S, Farland W, Park C, Rhomberg L, Scheuplein R, Starr T,
Wilson J, eds). Washington, DC:ILSI Press, 1995.

28. Rhomberg LR. Use of quantitative modelling in methylene chlo-
ride risk assessment. Toxicology 102:95-114(1995).

29. Bois FY. Statistical analysis of Clewell et al. PBPK model of
trichloroethylene kinetics. Environ Health Perspect 108(suppl
2):307-316 (2000).

30. Bois FY. Statistical analysis of Fisher et al. PBPK model of
trichioroethylene kinetics. Environ Health Perspect 108(suppl
2(:275-282 (2000)..

31. U.S. EPA. Methods for Derivation of Inhalation Reference
Concentrations and Application of Inhalation Dosimetry.
EPA/600/8-90/066F. Washington, DC:U.S. Environmental
Protection Agency, 1994.

32. U.S. EPA. Technical Analysis of New Methods and Data
Regarding Dichloromethane Hazard Assessment. External
Review Draft. EPA/600/8-87/029A. Washington, DC:U.S.
Environmental Protection Agency, 1987.

33. U.S. EPA. Update to the Health Assessment Document and
Addendum for Dichloromethane (Methylene Chloride):
Pharmacokinetics, Mechanisms of Action, and Epidemiology.
External Review Draft. EPA/600/8-87/030A. Washington,
DC:U.S. Environmental Protection Agency, 1987.

34. Andersen ME, Clewell HJ Ill, Krishnan K. Tissue dosimetry,
pharmacokinetic modeling, and interspecies scaling factors.
Risk Anal 15:533-537 (1995).

35. Mordenti J. Man versus beast: pharmacokinetic scaling in
mammals. J Pharmac Sci 75:1028-1040 (1986).

36. Travis CC, White RK, Ward RC. Interspecies extrapolation of
pharmacokinetics. J Theoret Biol 142:285-304 (1990).

37. Fukuda K, Takemoto K, Tsuruta H. Inhalation carcinogenicity of
trichloroethylene in mice and rats. Ind Health 21:243-254 (1983).

38. Wartenberg D, Reyner D, Scott CS. Trichloroethylene and
cancer: epidemiologic evidence. Environ Health Perspect
1081suppl 2):161-176 (2000).

39. Moore M, Harrington-Brock K. Mutagenicity of trichloro-
ethylene and its metabolites: implications for the risk assess-
ment of trichloroethylene. Environ Health Perspect 108(suppl
2):21 5-2230 (2000).

40. NCI. Carcinogenesis Bioassay of Trichloroethylene. CAS No. 79-
01-6 NIH-77-813. Bethesda, MD:National Cancer Institute, 1976.

41. Andersen ME, Clewell HJ Ill, Gargas ML, Smith FA, Reitz RH.
Physiologically based pharmacokinetics and the risk assess-
ment process for methylene chloride. Toxicol AppI Pharmacol
87:185-205 (1987).

42. Smith AE, Gray GM, Evans JS. The ability of predicted internal
dose measures to reconcile tumor bioassay data for chloroform.
Regul Toxicol Pharmacol 21:339-351 (1995).

43. Bell Z, Olson K, Benya T. Final Report of Audit Findings of the
Manufacturing Chemists Association (MCA): Administered
Trichloroethylene (TCE) Chronic Inhalation Study at Industrial
Bio-Test Laboratorie, Decatur, IL:Bio-Test Laboratories, 1978.

44. Odum J, Foster JR, Green T. A mechanism for the development
of Clara cell lesions in the mouse lung after exposure to
trichloroethylene. Chem-Biol Interact 83:135-153 (1992).

45. Henschler D, Vamvakas S, Lammert M, Dekant W, Kraus B,
Thomas B, Ulm K. Increased incidence of renal cell tumors in a
cohort of cardboard workers exposed to trichloroethene. Arch
Toxikol 69:291-299 (1995).

358 Environmental Health Perspectives * Vol 108, Supplement 2 * May 2000


